

ICON modelling framework at DWD

ICON

ICON consortium

Diversity and Partnership

MPI: Advance Climate Science, Atmosphere, Ocean, Land, understanding of global processes driving the planet

DWD: Forecasting for Weather (NWP/ESM) and Climate (Seasonal, Decadal, Projection), Climate Monitoring (Reanalysis), ART and GHG Monitoring and Forecasting

DKRZ: Infrastructure for Climate Science, Tools and Techniques, HPC Leadership

KIT: Modelling and Forecasting of Aerosols and Greenhouse Gases, ART and Cloud Process Interaction

ICON seamless **ESM** 0-7 days & seasonal to decadal

- (1) 2023 Coupling A+O YAC on NEC Experimental Data Assimilation, ICON-O-LAM technical
- (2) 2024 Coupling A+O in BACY
 Verification available

 Data Assimilation in DACE technical
 ICON-O-ZOOM technical
- 3) 2025 Near-Realtime Tests with BACY, Data Bases, NUMEX Prep, ICON-O-LAM Data Ass. technical
- (4) 2026 Implementation in NUMEX

 Deterministic Cycle with Data

 Assimilation preoperational
- 5) 2027 **LETKF** implementation and testing
- 2028 hybrid EnVAR + LETKF implementation and testing
- (7) 2029 **NUMEX** for hybrid system, Testing
- (8) 2030 Ensemble-Variational ESM ready for operational forecasting

Major upgrades of the ICON-NWP system at DWD planned for 2022

ICON

2 / March / 2022

by Günther Zängl

Overview

- → Resolution upgrade in global ICON (including EU-nest)
- Usage of new global high-resolution orography data
- Assimilation of 2m-temperature and enhanced coupling between model and data assimilation building upon it

Planned to become operational in Q4/2022

Horizontal resolution Verification against IFS analyses

Main findings

- Increasing the horizontal resolution improves the forecast quality until reaching the convective gray zone
- Increasing the vertical resolution is beneficial where the resolution is currently rather coarse, i.e. above the middle troposphere; PBL turns out to be tricky...

Decisions

→ Increase EPS resolution from 40/20 km to 26/13 km while keeping the deterministic configuration at 13/6.5 km; increase number of vertical levels from 90 to 120 (60 to 74 in EU-nest), placing the majority of the additional levels in the stratosphere

Remark:

The higher EPS resolution leads to a significant improvement of the deterministic high resolution forecasts as well

- Variational solver depends on the ensemble resolution
- Improved Ensemble error covariances in 3DEnVar data assimilation

Summary

- → The resolution upgrade will bring a moderate improvement of forecast quality in the deterministic system and a major one in the ensemble
- → The new orography data allow for a more accurate calculation of SSO parameters, which will have a beneficial impact on forecast quality particularly in NH winter. Lower-tropospheric winds benefit from using seemingly marginal SSO information
- → The T2M assimilation and the extended model-DA coupling building upon it leads to a major improvement of T2M and RH2M scores for short-range forecasts, gradually decreasing but remaining significant in the medium range

Cyclone Tracking at DWD

ICON

Cyclone tracking

WTRACK

ZYPACK

Tropical and extratropical Cyclones

- Time stepping (hourly to 6-hourly)
- Any Grid configurations
- Grid resolutions (13km to 160km)
- Applications for Weather and Climate
- Tracking of wind and precipitation fields
- Contributions to TC-PFP

TC-Tracking

Extratropical cyclones

Delay due to lack of resources

15

-> Q1/2023

Cyclone tracking

16

WTRACK

Tracking of windfields

New:

Tracking of precipitation fields

Example:

Simple Tracking algorithm (MSLP minimum) running at DWD

Ensemble Tracks	Strike Probability
90% percentile of mean wind speed	90% percentile of max precipitation

- **→** 2021082600 202109312
- → Forecasts initialize every 12h

→ Storms

Ida (Kate) (Julian) Larry4 Storm Storm 3

Ida (Julian) (Kate)

Ida (Julian) (Kate)

Ida (Julian) (Kate)

Ida (Julian) (Kate) Larry

Ida (Julian) (Kate) Larry

Ida (Julian) Larry

Ida (Julian) Larry

Ida (Julian) Larry

Thank you for listening!

ICON

